Radio-strike: A reinforcement learning game for MIMO beam selection in unreal engine 3-D environments

  • * Register (or log in) to the Neural Network to add this session to your agenda or watch the replay

  • Date
    2 July 2021
    Timeframe
    16:00 - 17:00
    Duration
    60 minutes
    Share this session

    Gaming and other industries are driving the development of sophisticated tools to create virtual worlds, composed of 3-D models, physics engines and other components. This talk promotes the vision that 5G and beyond will benefit from the availability of virtual worlds to leverage machine learning / artificial intelligence (ML/AI) applied to communication networks. As a concrete example of a CAVIAR (“Communication networks and Artificial intelligence immersed in VIrtual or Augmented Reality”) framework, this talk will present “Radio-Strike”, developed with Epic Games’ Unreal Engine and Microsoft’s AirSim simulator. Radio-Strike is used in the UFPA Problem Statement for the 2021 ITU AI/ML in 5G Challenge, in which participants are invited to develop a deep reinforcement learning (RL) agent that plays the role of a base station serving drones, vehicles and pedestrians via MIMO beamforming in a 3-D scenario. This problem targets those interested in designing ML/AI systems that learn from experience and outperform conventional solutions relying only on signal processing. I will provide an introduction to RL applied to MIMO beamforming, explain Radio-Strike and discuss challenges to deploy RL in 5G / 6G networks.

    Share this session
    Discover more from programme stream
    AI/ML Challenge Finale: Beam-Level Traffic Forecasting and Site specific radio...

    AI/ML Challenge Finale: Beam-Level Traffic Forecasting and Site specific radio...

    13 December 2024 - 14:00 to 15:30

    AI/ML Challenge Finale: Radio Resource Management for 6G and Multi-user...

    AI/ML Challenge Finale: Radio Resource Management for 6G and Multi-user...

    8 November 2024 - 15:00 to 16:15

    Green Energy and Traffic Forecasting using AI/ML Challenge Launch

    Green Energy and Traffic Forecasting using AI/ML Challenge Launch

    6 August 2024 - 14:00 to 15:00

    Enabling Distributed Applications with Online Machine Learning

    Enabling Distributed Applications with Online Machine Learning

    17 July 2024 - 17:00 to 18:00

    Radio Resource Management for 6G in-X Subnetworks

    Radio Resource Management for 6G in-X Subnetworks

    26 June 2024 - 14:00 to 15:00