Explainable AI in the era of Large Language Models

In personWorkshop
  • Date
    31 May 2024
    Timeframe
    10:00 - 18:00
    Duration
    Share this session

    The domain of Explainable Artificial Intelligence (XAI) has made significant strides in recent years. Various explanation techniques have been devised, each serving distinct purposes. Some of them explain individual predictions of AI models by highlighting influential input features, while others enhance comprehension of the model’s internal operations by visualizing the concepts encoded by individual neurons. Although these initial XAI techniques have proven valuable in scrutinizing models and detecting flawed prediction strategies (referred to as “Clever Hans” behaviors), they have predominantly been applied in the context of classification problems. The advancement of generative AI, notably the emergence of exceedingly large language models (LLMs), has underscored the necessity for next-generation explanation methodologies tailored to this fundamentally distinct category of models and challenges.

    This workshop aims to address this necessity from various angles. Firstly, to think about what “explaining” means in the context of generative AI. Secondly, to discuss recent methodological breakthroughs, which allow to gain deeper insights into the mysterious world of LLMs. Lastly, we will have a look at the practical implications when a new class of explainable LLMs becomes available, not only from the standpoint of the lay user but also by considering the opportunities for developers, experts, and regulators.

    Are you sure you want to remove this speaker?