How can AI improve weather and climate prediction?

  • * Register (or log in) to the Neural Network to add this session to your agenda or watch the replay

  • Date
    12 January 2022
    Timeframe
    17:00 - 18:30
    Duration
    90 minutes
    Share this session

    Martin Schultz:

    AI methods are rapidly taking hold in almost any aspect of our lives. In some specialized application areas, computers are outperforming humans with respect to image or audio analysis, speech recognition, and controlled movements. Nevertheless, weather and climate prediction still uses humongous computer codes, which solve thousands of differential equations on the fastest supercomputers. Everywhere along the workflow of such prediction systems researchers are trying out how AI could transform or even revolutionize weather and climate forecasting. While there are some promising research pathways, several scientific and technical challenges have to be overcome before we might see a widespread adaptation of such methods in weather centres and research organisations.  I will discuss recent achievements and ongoing activities and I may be tempted to speculate about fundamental, inherent limitations of AI concepts in this application area.

    Duncan Watson-Parris:

    Uncertainties in estimating Earth’s future climate stem from both inaccuracies in our models and the vast array of possible choices that society will make in the intervening years. One of the most pressing uncertainties in climate modelling is that of the effect of anthropogenic aerosol, particularly through their interactions with clouds. Here I will introduce a general earth system emulation framework which leverages advances in machine learning and describe its application to the emulation of entire climate models for the reduction of this uncertainty. I will also demonstrate how such emulation can be used to better approximate the climate response to different anthropogenic forcing agents in order to aid in their detection and attribution, and in the exploration of different future emissions pathways.

    Share this session
    In partnership with
    Discover more from programme stream
    Machine learning and climate change: learning from present-day observations to...

    Machine learning and climate change: learning from present-day observations to...

    13 March 2024 - 17:00 to 18:15

    Climate Causality: Connecting data and theory to understand the drivers...

    Climate Causality: Connecting data and theory to understand the drivers...

    6 March 2024 - 17:00 to 18:15

    Creating trustworthy AI for weather and climate

    Creating trustworthy AI for weather and climate

    21 February 2024 - 17:00 to 18:15

    WeatherBench 2 and the second revolution of weather prediction

    WeatherBench 2 and the second revolution of weather prediction

    29 November 2023 - 17:00 to 18:15

    Machine Learning Insights into Precipitation: Implicitly Learning Cloud Organization for...

    Machine Learning Insights into Precipitation: Implicitly Learning Cloud Organization for...

    15 November 2023 - 14:00 to 15:15

    Are you sure you want to remove this speaker?