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Tropical Cyclones: Rotating, (warm-core) organized 
system of clouds that has a closed low-level 

circulation of air

Definitions: 
AMS Glossary of 
Meteorology
Video source: 
Denver7, 
with materials from 
CIRA & NOAA  

Video source 1 = 
https://www.youtube.com/watch?v=Fw8VWSn9Lps&ab_channel=Denver7 

https://www.youtube.com/watch?v=Fw8VWSn9Lps&ab_channel=Denver7


Video source: NOAA 
&

Storm surge triggered by hurricane Ian (FL, 
USA)
Video source: Max Olson Chasing

Video source 2 = 
https://www.youtube.com/watch?v=al8yTiCVfro&ab_channel=MaxOlsonCha
sing , 
Video source 3 = 
https://www.youtube.com/watch?v=3vF4fCoRwH0&ab_channel=KHOU11, 
Hurricane Ian flooding: Water rises in Central Florida | Raw video, KHOU 11

https://www.youtube.com/watch?v=al8yTiCVfro&ab_channel=MaxOlsonChasing
https://www.youtube.com/watch?v=al8yTiCVfro&ab_channel=MaxOlsonChasing
https://www.youtube.com/watch?v=3vF4fCoRwH0&ab_channel=KHOU11


Dynamical forecasting: Integrate equations of motion 
on a rotating sphere to predict the weather

Source: IFS Documentation cy47r3 



Dynamical forecasting: Integrate equations of motion 
on a rotating sphere to predict the weather

Source: IFS Documentation cy47r3, Windy (Mar 7, 2023) 

Statistical forecasting: Use past observations for 
prediction



Source: IFS Documentation cy47r3, Windy (Mar 7, 2023), 
American Meteorological Society Glossary of Meteorology, FHLO (Emanuel 2017; Lin et al., 2020)  

Statistical forecasting: Use past observations for prediction
Model Output Statistics: Links dynamical forecasts to obs. using 
statistics

Dynamical forecast Statistical model

Hybrid forecast



Challenges of Statistical Forecasting 
Specific to Tropical Meteorology

• Rarity of extreme events ↔ Data quality/scarcity
○ TCs are temporally rare and spatially rare 
○ In situ observations (sondes, radar) are hard to get
○ We can (and do) use satellite data but it’s hard to get the information we need at 

the scales we need (a few km spatially, 1 km or less vertically to know what clouds 
are doing, and new information every few hrs or less when landfall is close)

• Complexity of physics ↔ Anticipate TC response to changes in environment
○ TCs are governed complex fluid thermodynamics and dynamics:

■ Rotating vortex on a rotating sphere, with big impacts from boundary layer 
between air/ocean

■ Thermodynamics (phase changes, cloud physics, rain, lightning) can impact 
dynamics



Opportunities brought by Machine Learning
1) Improvement in prediction quality (algorithms, optimization)

2) Improvements in understanding (new spatiotemporal connectivities, 
nonlinearities, predictors, etc.)
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i) Can we use machine learning to predict 
tropical cyclone formation (tropical 
cyclogenesis)?
● Existing statistical products mostly based on linear algorithms [e.g. 

Schumacher et al. 2009]) (can suffer from false alarms)
● Recent success at forecasting tropical cyclogenesis with ML on very short 

timescales (couple of hours) [e.g., Zhang et al 2019, Kim et al. 2019]

● Q1: Can we use machine learning models with existing statistical products to 
improve tropical cyclogenesis forecasting?

● Q2: How can we adapt and leverage machine learning models to better deal 
with rare events? 



Simple ML-based tropical cyclogenesis models skillfully predict TC 
genesis at up to 12 hrs, with fewer false alarms.

Actual Storm Classifications, 09/23/2018 06:00
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Simple ML-based tropical cyclogenesis models skillfully predict TC 
genesis at up to 12 hrs, with fewer false alarms.

Actual Storm Classifications, Hurricane Lorenzo 23/09/2018 06:00

TC genesis

Existing TCs

Existing TCExisting TC

Existing 
extratropical storm

Current model 
(linear) 6-hr forecast 
for 23/09/2018 06:00  

Probability of 
GenesisCredit: Marshall Baldwin, OU
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Simple ML-based tropical cyclogenesis models skillfully predict TC 
genesis at up to 12 hrs, with fewer false alarms.

Actual Storm Classifications, Hurricane Lorenzo 23/09/2018 06:00

TC genesis

Existing TCs

Existing TCExisting TC

Existing 
extratropical storm

RF 12-hr forecast for 
23/09/2018 06:00  

Probability of 
Genesis

56% reduction in false 
alarms over LDA

Credit: Marshall Baldwin, OU



Problem 2: Tropical cyclogenesis is a rare event, and making 
skillful predictions of rare events is difficult.
● Most of the time (less than 0.1% of the time), a tropical cyclone is NOT forming→we have 

an imbalanced dataset
● How do we handle class imbalance? 

○ Oversampling: duplicate samples from minority class to increase minority sample size
○ Undersampling: delete samples from majority class to reduce majority sample
○ Other options: combinations of over-/undersampling, synthetic oversampling, etc

● Problem: Can’t re-balance the data at test time, meaning we need to re-adjust the 
probabilities at test time (difficult)

● One solution: use data-driven thresholding to reduce class imbalance BEFORE we make 
our predictions. 
○ Examine PDF of each feature and look for thresholding criteria to reduce class 

imbalance;
○ Advantages: can be done at test time; thresholds are interpretable (and often, can be 

evaluated in the context of domain knowledge) 
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Problem 2: Tropical cyclogenesis is a rare event, and making 
skillful predictions of rare events is difficult.
● Most of the time (less than 0.1% of the time), a tropical cyclone is NOT forming→we have 

an imbalanced dataset
● How do we handle class imbalance? 

○ Oversampling
○ Undersampling
○ Other options

● Problem: Can’t re-balance the data at test time, meaning we need to re-adjust the 
probabilities at test time (difficult)

● One solution: use data-driven thresholding to reduce class imbalance BEFORE we make 
our predictions. 
○ Examine PDF of each feature and look for thresholding criteria to reduce class 

imbalance;
○ Advantages: can be done at test time; thresholds are interpretable (and often, can be 

evaluated in the context of domain knowledge) 
Credit: Milton Gomez, 

UNIL



Thresholding criteria based on sea surface 
temperature–no cyclogenesis in cold SSTs.

Leverage labels to 
distinguish between the 
majority and minority 
classes

Positive Class
(Genesis)

Negative Class

ThresholdEliminated
samples

Credit: Milton Gomez, 
UNIL



Data-driven thresholding improves HR without 
compromising FAR

No filter: statistical tropical 
cyclogenesis predictive model 
with no filtering 

BF filter: existing statistical 
tropical cyclogenesis predictive 
model (uses a brute force 
filter)

DD filter: statistical model with 
the addition of data-driven 
filtering

Data-driven filtering has higher 
positive predictive value than 
unfiltered model and a higher 
hit rate than BF filter Credit: Milton Gomez, 

UNIL

DD filter

no filter
BF filter



Opportunities brought by Machine Learning
1) Improvement in prediction quality (algorithms, optimization)

i. Prediction of tropical cyclone formation
ii. Prediction of tropical cyclone intensity and track 
iii. Prediction of rare events



ii) Using Machine Learning to Improve Forecasts 
of TCs

○ Current statistical forecasting models make skillful forecasts of 
tropical cyclone intensity on par with explicitly physics-simulating 
models 
■ Statistical TC intensity forecasts: based on environmental 

conditions (winds, ocean, etc) and persistence (what has the 
storm been doing in the past 12-24 hours?) 

■ Current algorithms: based on simple models, like linear 
discriminant analysis 



ii) Using Machine Learning to Improve Forecasts 
of TCs

○ Current statistical forecasting models make skillful forecasts of 
tropical cyclone intensity on par with explicitly physics-simulating 
models 
■ Statistical TC intensity forecasts: based on environmental 

conditions and persistence 
■ Current algorithms: based on simple models, like linear 

discriminant analysis 
○ Recent studies have used neural networks to classify TC intensity 

based on satellite imagery [e.g., Wimmers et al. 2019, Chen et al. 
2019, Zhang et al. 2020, Wang et al. 2021]



ii) Using Machine Learning to Improve Forecasts 
of TCs…Including Uncertainty

○ Q1: can we train a skillful AI-based TC prediction model on the 
datasets used to produce the existing statistical forecasts?
■ Computationally efficient
■ Easier transition into operational forecasting
■ (in progress) Compatible with eXplainable AI (XAI) tools

○ Q2: in addition to a central prediction of TC intensity, can we predict 
the uncertainty around our central prediction? 



Neural networks can be designed to predict TC intensity 
distributions in addition to a central prediction, letting us 
quantify uncertainty.  

µ = mean 
σ = scale (variance)
γ = skewness
τ = tail Barnes et al. 

(2022)

● Inputs: existing TC intensity models 
as well as environmental predictors 
included in existing models 

● NN predicts mean (central value), 
variance, and (optional) skewness and 
tailweight–we use these values to 
construct a probability distribution

● Model everything using a sinh-arcsinh 
distribution (more general than a 
normal distribution) 

● NOTE: can use whatever distribution you 
want but must define it a priori



Neural networks can be designed to predict TC intensity 
distributions in addition to a central prediction, letting us 
quantify uncertainty.  

µ = mean 
σ = scale 
γ = skewness
τ = tail 

Example of 1 through 5 day intensity forecasts made by 
the neural network (left) for Hurricane Ian. Stars 
indicate the best-track intensity forecast, adjusted at the 
end of the season (our “truth”), while open circles 
indicate the real-time intensity forecasts made by the 
NHC. 

Barnes et al. 
(2022)



A similar NN architecture can be used to make forecasts of TC 
track, and the uncertainty around the track in both directions. 

µx , µy  = forecast biases in the x,y directions
σx ,σy  = standard deviations of x and y errors
ρ(x,y)  = correlation of x and y errors

Barnes et al. (2022); DeMaria et al 
(2023)

Example of 1 through 5 day track forecasts made by 
the neural network (left) for Hurricane Ian. Xs 
indicate best-track; shading indicates uncertainty 
around track forecast. 

X—X NHC Best Track 



Quantifying uncertainty is critical for weather 
and climate prediction–no one size fits all 

method

Haynes et al. 
(2023)
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Quantifying uncertainty is critical for weather 
and climate prediction–no one size fits all 

method

Examples: Quantized softmax 
(e.g. Wimmers et al. 2019); 
quantile regression and 
convection (Bremnes 2020, 
Haynes et al. 2023)

Examples: NNs for ensemble 
post-processing of weather 
forecasts (e.g., Rasp and Lerch 
2018), estimating TC intensity 
(Barnes et al. 2022), 
atmospheric river prediction 
(Chapman et al. 2022)

Examples: MM ensemble of 
convection simulations over 
Europe (Beck et al. 2016); 
Model weighting for MM 
forecasts (DelSole et al. 2013)
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Examples: Custom loss 
functions based on continuous 
rank probability score (CRPS) 
(e.g., Scheuerer et al. 2020, 
Chapman et al. 2022)

Examples: Bayesian NNs and 
precipitation detection 
(Orescanin et al. 2021), 
Bayesian NNs for satellite 
datasets (Ortiz et al. 2022)

Haynes et al. 
(2023)



Opportunities brought by Machine Learning
1) Improvement in prediction quality (algorithms, optimization)

i. Prediction of tropical cyclone formation
ii. Prediction of tropical cyclone intensity and track 
iii. Prediction of rare events of a rare event  



iii) ML models can also make skillful forecasts of extreme 
events such as rapid intensification

Underforecasting 
rapid intensification

Overforecasting rapid 
intensification

Existing statistical 
forecast model

Existing 
consensus

ML + 
existing 
model

McGraw et al. (in 
prep.)

TC Rapid Intensification Forecasts, 
Atlantic, 2019-2021SHIPS-RII: used to forecast rapid 

intensification (big changes in 
intensity over short periods of time) 
 
A random forest model trained on 
the same data as the existing 
SHIPS-RII model improves RI 
forecasting, especially when added 
to consensus



ML models can also make skillful forecasts of extreme events 
such as rapid intensification

Underforecasting 
rapid intensification

Overforecasting rapid 
intensification

Existing statistical 
forecast model

Existing statistical 
consensus

ML + 
existing 
model

Random Forest-based Model

Existing  
statistical 
consensusCNN model, 

trained on GOES 
satellite data

CNN-based Model

McGraw et al. (in prep.); Griffin et al. 
(2022)



Machine learning models can make skillful TC 
forecasts with uncertainty 
● AI-based models can be used to successfully predict 

tropical cyclone intensity and track
● We can design AI models that also include uncertainty in 

their predictions
● AI-based models can skillfully predict extreme events, 

such as TC rapid intensification 
● AI-based models are currently being introduced into the 

research-to-operations process at operational forecast 
centers like the National Hurricane Center 



Opportunities brought by Machine Learning
1) Improvement in prediction quality (algorithms, optimization)

2) Improvements in understanding (new spatiotemporal connectivities, 
nonlinearities, predictors, etc.)



Machine learning facilitates the interaction 
between  data and knowledge

Use ML to extract 
knowledge from data
Data-Driven Discovery

Observational & 
high-fidelity model 

data

Physical knowledge



Hypothesis: Cloud-radiative feedback can be 
critical to the early intensification of tropical 

cyclones

See: Bu et al. (2014); Ruppert et 
al. (2020); Wu et al. (2021)

Artificial world 
where cloud 
radiative 
feedback is 
suppressed
Video source 1 = 
https://www.youtube.com/w
atch?v=Fw8VWSn9Lps&ab
_channel=Denver7 

https://www.youtube.com/watch?v=Fw8VWSn9Lps&ab_channel=Denver7
https://www.youtube.com/watch?v=Fw8VWSn9Lps&ab_channel=Denver7
https://www.youtube.com/watch?v=Fw8VWSn9Lps&ab_channel=Denver7


What spatial patterns of radiative heating 
promote/prevent tropical cyclone intensification?

See: Bu et al. (2014); Ruppert et 
al. (2020); Wu et al. (2021)

Artificial world 
where cloud 
radiative 
feedback is 
suppressed
Video source 1 = 
https://www.youtube.com/w
atch?v=Fw8VWSn9Lps&ab
_channel=Denver7 

https://www.youtube.com/watch?v=Fw8VWSn9Lps&ab_channel=Denver7
https://www.youtube.com/watch?v=Fw8VWSn9Lps&ab_channel=Denver7
https://www.youtube.com/watch?v=Fw8VWSn9Lps&ab_channel=Denver7


Method: “Transparent” Principal Component 
Regression 

Hurricane Maria

20 Ensemble 
simulations on  
Haiyan

1D intensification/ 2D 
axisymmetric / full 3D

Hourly outputs

Hierarchy of models with 
different complexities

16 Haiyan exp (Training) / 2 
(Valid) / 2 (Test)

Trainable weights with MSE loss

Step II. Predict time evolution 
in PC space with regression 
models

Step III. PC space - 
Physical space conversion



Result: Spatial structure most relevant to intensification for 
each TC

 

Credits: Frederick Iat-Hin Tam (UNIL)

lw| sw|

Longwave 
structure

Shortwave structure



Use ML to extract 
knowledge from data

Use physics to improve the 
robustness of ML 

predictions

Data-Driven Discovery

Physics-Guided ML

Machine learning facilitates the interaction 
between  data and knowledge



Motivation: For climate modeling, physically rescaling 
inputs allows neural nets to generalize from cold to warm 

climate

See: Beucler et al. (2021, arXiv 2112.08440), Mooers et al. (2021), Rasp et al. (2018)

+8K

Training/Validation on
 cold aquaplanet 

simulation

Test on 
warm aquaplanet simulation

Climate-Invariant nets: Rescale inputs/outputs so that (extrapolation)→
(interpolation) 



Extrapolatio
n

Interpolation

Log. Histogram



Physically-Rescaled Neural Networks Generalize 
Better

Across Climates in Earth-like configurations
Without Rescaling With Physical Rescaling

Mid-Tropospheric Subgrid Heating

See: Beucler et al. (2021, arXiv 2112.08440)



For Tropical Cyclones: Can Potential Intensity theory 
help machine learning generalize across env. 

conditions? 

Motivation: Physical knowledge improves ML 
robustness
= No ↓prediction quality for reasonable data 
variations



For Tropical Cyclones: Can Potential Intensity theory 
help machine learning generalize across 

environments? 

See: Emanuel (1986), Emanuel (2003), Rousseau-Rizzi et al. (2022), Sroka & Emanuel (2021); Figure source: 
Emanuel (2005)

Analytic bound on max 
winds:



For Tropical Cyclones: Can Potential Intensity theory 
help machine learning generalize across 

environments? 

See: Emanuel (1986), Emanuel (2003), Rousseau-Rizzi et al. (2022), Sroka & Emanuel (2021); Figure source: 
Emanuel (2005)

Analytic bound on max 
winds:

Difference in 
CAPE

Helps generalize across 
seasons, basins, climates…



Credits: Marie McGraw (CIRA)

Preliminary results: Rescaling tropical cyclone 
intensity transforms extrapolation into interpolation



Source: Runge et al. (2019), See: Kretschmer et al. (2016), Runge et al. (2019), Spirtes & Glymour (1991)

Motivation: Causal machine learning can 
remove spurious links without degrading 

performance



Before PC1: 
Fully-connected

After PC1: Sparse

Source: Iglesias-Suarez (DLR), See: Spirtes and Glymour (1991); Addition in this work: Multidata PC1 (Gerhadus & Runge, 
2022) 



Tropical cyclone prediction: Select optimal set of 
predictors to improve the robustness of 

prediction

Image Source: internetgeography.net

Feature = Meteorological variable + vertical lev. + horizontal sector + 
Time lag • Hor. Divergence

• Vertical velocity
• Relative vorticity
• Relative 

humidity
• Geopotential z
• Eq. pot. Temp.
• Wind shear
• Column 

integrals



Credits: Saranya Ganesh S. (UNIL)



The optimal set of predictors is validated using 
an independent validation set (50 separate TCs) 

Preprint coming soon: Ganesh S. et al. (2023, EDS)

Multidata causal feature 
selection outperforms:

1. Random feature 
selection

2. XAI-based feature 
selection (Random 
forest)

3. Lagged 
correlation-based 
feature selection



Causal feature selection not only removes spurious 
links, but also suggests new predictors for TC 

intensity
Causa
l

Correlation

Preprint coming soon: Ganesh S. et al. (2023, EDS)



Opportunities brought by Machine Learning
1) Improvement in prediction quality (algorithms, optimization)

2) Improvements in understanding (new spatiotemporal connectivities, 
nonlinearities, predictors, etc.)

3) Can we learn more?



Can we use machine learning to create 
additional datasets for tropical meteorology?  

Microwave Imagery (i.e.,  AMSR-E, AMSR2) Visible and Infrared Imagery (GOES, Himawari)

Can help with intensity estimation, center fixing, 
storm motion, and storm structures

Used to estimate TC intensity, center, and size

Can “See through” clouds Limited to cloud top temperatures

Each satellite passes over a location ~ every 12 
hours (including all satellites, coverage is about 
3-hrly)

Geostationary satellites “look” at the same 
locations all the time; with GOES, we get a full scan 
of the CONUS every 10 min 

Goal: can we use a neural network, trained on GOES visible 
and IR imagery, to produce simulated microwave data at high 
temporal frequencies? 

Opportunities for improved forecasting and TC physics study



Promising early results using neural networks to 
create simulated microwave data from visible/IR. 

Observed 
microwave 
(available 
every few 
hours or less) 

GOES 
inputs 
(available 
every 10 
min)

Simulated 
microwave 
produced by 
neural 
networks

Credit: Kathy Haynes, CIRA



Addressing biases in artificial intelligence and 
earth sciences.

Credit: Amy McGovern (OU) 
and co-authors



• Potential of artificial intelligence for tropical meteorology is clear…
• … but hindered by lack of unified training data & evaluation 

protocols

See: MNIST (1998, LeCun), CIFAR (2009, Krizhevsky), ImageNet (2009, Deng et al.), 
WeatherBench (2020, Rasp et al.), Maelstrom datasets (2021, Dueben et al.), ClimateBench (2022, Watson-Parris et 
al.)

• AI-ready datasets 
for TC prediction at 
different 
timescales

• Collaborative 
design of 
evaluation 
protocols



Marie McGraw (CIRA) & Tom Beucler (UNI Lausanne)
AI for Good – March 8th, 2023

Thank you!
ML can improve:

1) predictions of TCs across life stages, 
2) understanding of physical processes

…as long as we keep data limitations and 
biases in mind
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